SONOMA COUNTY, CALIFORNIA
DRY CREEK ECOSYSTEM RESTORATION PROJECT - PHASE II (REACHES 2A UPSTREAM AND 4C)

LOCATION MAP
NOT TO SCALE

VICTIM MAP
SCALE: 1"=2000'

SOLICITATION NO: W912P7-21-B-XXXX
CONTRACT NO: W912P7-21-C-XXXX
ISSUE DATE: AUG 2020
NOTES
1. THE MAINTENANCE & MONITORING EASEMENTS EXTEND FROM THE BOUNDARY
LINE TO THE CENTERLINE OF DRY CREEK.
2. WITHIN THE MAINTENANCE AND MONITORING EASEMENTS, THE SUGGESTED
ACCESS ROUTES ARE APPROXIMATE AND MAY BE MODIFIED BASED ON
ACTUAL CONDITIONS IN THE FIELD TO MINIMIZE IMPACTS. ACCESS ROUTES
MUST BE APPROVED BY CONTRACTING OFFICER.
3. ACCESS ROUTE IMPROVEMENTS MAY INCLUDE MINOR GRADING, LEVELING,
PLACEMENT OF GRAVEL, AND VEGETATION CLEARING.
4. CONTRACTOR MUST MINIMIZE REMOVAL OF MATURE TREES AND NATIVE
VEGETATION.

APN: 088-210-023
N: 1982337.35
E: 6310324.45
1.24
ACRES

APN: 110-020-032
N: 1981983.52
E: 6310389.71
DRY CREEK

APN: 110-130-035
D
APN: 110-010-034
APN: 110-150-023
APN: 110-150-007
APN: 110-020-027
APN: 110-010-010
1. THE MAINTENANCE & MONITORING EASEMENTS EXTEND FROM THE BOUNDARY LINE TO THE CENTERLINE OF DRY CREEK.
2. WITHIN THE MAINTENANCE AND MONITORING EASEMENTS, THE SUGGESTED ACCESS ROUTES ARE APPROXIMATE AND MAY BE MODIFIED BASED ON ACTUAL CONDITIONS IN THE FIELD TO MINIMIZE IMPACTS. ACCESS ROUTES MUST BE APPROVED BY CONTRACTING OFFICER.
3. ACCESS ROUTE IMPROVEMENTS MAY INCLUDE MINOR GRADING, LEVELING, PLACEMENT OF GRAVEL, AND VEGETATION CLEARING.
4. CONTRACTOR MUST MINIMIZE REMOVAL OF MATURE TREES AND NATIVE VEGETATION.

REACH 4C (SITES 4C AND 4D) OVERVIEW

APN: 089-040-001
APN: 089-040-025
APN: 089-190-008
APN: 089-190-012
APN: 089-190-034
APN: 089-190-028
APN: 089-210-015
APN: 089-200-012
APN: 089-040-019
APN: 089-040-011
APN: 089-040-009
APN: 089-040-024
APN: 089-040-002
APN: 089-190-046
APN: 089-030-017
APN: 089-040-009
APN: 089-040-001
APN: 089-170-015
APN: 089-170-033
APN: 089-170-038
APN: 089-200-019
APN: 089-200-013
APN: 089-200-012
APN: 089-210-015
APN: 089-030-020
APN: 089-030-017
1. The Maintenance & Monitoring Easements extend from the boundary line to the centerline of Dry Creek.
2. Suggested access routes shown into the creek are approximate and may be modified based on actual conditions in the field to minimize impacts.

SITE 2A EXISTING CONDITIONS

<table>
<thead>
<tr>
<th>PLAN</th>
<th>SCALE: 1" = 30'</th>
</tr>
</thead>
</table>

NOTES

- Site 2A Right Limit of Grading See DWG CD101
- Site 2A Left Limit of Grading See DWG CD101
- Access Road, Typ (Note 5)
- Site 2A Bank Repair Limit of Grading See DWG CD101
- Maintenance & Monitoring Easement (Note 1)
- Access Route
- Ex Riffle, Typ
- Ex Drainage

SITE 2A EXISTING CONDITIONS

- Site 2A Right Limit of Grading See DWG CD101
- Site 2A Left Limit of Grading See DWG CD101
- Access Road, Typ (Note 5)
- Site 2A Bank Repair Limit of Grading See DWG CD101
- Maintenance & Monitoring Easement (Note 1)
- Access Route
- Ex Riffle, Typ
- Ex Drainage

NOTES

1. The Maintenance & Monitoring Easements extend from the boundary line to the centerline of Dry Creek.
2. Suggested access routes shown into the creek are approximate and may be modified based on actual conditions in the field to minimize impacts.

SITE 2A EXISTING CONDITIONS

<table>
<thead>
<tr>
<th>PLAN</th>
<th>SCALE: 1" = 30'</th>
</tr>
</thead>
</table>

NOTES

- Site 2A Right Limit of Grading See DWG CD101
- Site 2A Left Limit of Grading See DWG CD101
- Access Road, Typ (Note 5)
- Site 2A Bank Repair Limit of Grading See DWG CD101
- Maintenance & Monitoring Easement (Note 1)
- Access Route
- Ex Riffle, Typ
- Ex Drainage

SITE 2A EXISTING CONDITIONS

<table>
<thead>
<tr>
<th>PLAN</th>
<th>SCALE: 1" = 30'</th>
</tr>
</thead>
</table>

NOTES

- Site 2A Right Limit of Grading See DWG CD101
- Site 2A Left Limit of Grading See DWG CD101
- Access Road, Typ (Note 5)
- Site 2A Bank Repair Limit of Grading See DWG CD101
- Maintenance & Monitoring Easement (Note 1)
- Access Route
- Ex Riffle, Typ
- Ex Drainage

SITE 2A EXISTING CONDITIONS

<table>
<thead>
<tr>
<th>PLAN</th>
<th>SCALE: 1" = 30'</th>
</tr>
</thead>
</table>

NOTES

- Site 2A Right Limit of Grading See DWG CD101
- Site 2A Left Limit of Grading See DWG CD101
- Access Road, Typ (Note 5)
- Site 2A Bank Repair Limit of Grading See DWG CD101
- Maintenance & Monitoring Easement (Note 1)
- Access Route
- Ex Riffle, Typ
- Ex Drainage
1. The maintenance & monitoring easements extend from the boundary line to the centerline of Dry Creek.
2. Suggested access routes shown into the creek are approximate and may be modified based on actual conditions in the field to minimize impacts.

Notes:

SITE 2B EXISTING CONDITIONS

PROJECT

SCALE: 1" = 30'

DATE

DESCRIPTION

MARK

G104

6 OF 53

 Drawn by:

ARCHITECTS

ISSUE DATE

SOLICITATION NO:

CONTRACT NO:

DRAWING NO:

SUBMITTED BY:

CHECKED BY:

DESIGNED BY:

PETALUMA, CA 94108

450 GOLDEN GATE AVE, 4TH FLOOR

SAN FRANCISCO, CA 94102-3406

U.S. ARMY CORPS OF ENGINEERS

SAN FRANCISCO DISTRICT

DRY CREEK ECOSYSTEM RESTORATION PROJECT - SAN FRANCISCO DISTRICT

PAGE NUMBER: 6 OF 53

PAGE 6 OF 53

US Army Corps of Engineers

®

NOTES

1. The maintenance & monitoring easements extend from the boundary line to the centerline of Dry Creek.
2. Suggested access routes shown into the creek are approximate and may be modified based on actual conditions in the field to minimize impacts.

SITE 2B EXISTING CONDITIONS

PLAN

SCALE: 1" = 30'

G104

6 OF 53

Drawn by:

Architects

Issue date:

Solicitation no:

Contract no:

Drawing no:

Submitted by:

Checked by:

Designed by:

Patrolman

Notes:

1. The maintenance & monitoring easements extend from the boundary line to the centerline of Dry Creek.
2. Suggested access routes shown into the creek are approximate and may be modified based on actual conditions in the field to minimize impacts.

Site 2B existing conditions

Plan

Scale: 1" = 30'

MAGNITUDE OF EASEMENT

APN 113-060-033

EX RIFFLE, TYP

MATCHLINE - SEE SHEET G103

SITE 2A RIGHT LIMIT OF GRADING

SITE 2A LIMIT OF GRADING

SEE DWG CG101

SHORT TERM STAGING AREA

SITE 2B LIMIT OF GRADING

SEE DWG CG111

SHORT TERM STAGING AREA
NOTES

1. The maintenance & monitoring easements extend from the boundary line to the centerline of Dry Creek.
2. Suggested access routes shown into the creek are approximate and may be revised based on actual conditions in the field to minimize impacts.
3. See sheet CG121 for tree removal.
4. See profile on sheet CG123 for approx wise in existing above.

SITE 4D EXISTING CONDITIONS

PLAN SCALE: 1" = 30'

APN:
089-040-024

APN:
089-190-008

MATCHLINE - SEE SHEET G106

ACCESS ROUTE, TYP (NOTE 2)

MAINTENANCE & MONITORING EASEMENT (NOTE 1)

SITE 4D LIMIT OF GRADING
SEE DWG CG131 (NOTE 2)

EX ALCOVE (NOTE 4)

FLOW DRY CREEK CENTERLINE

FLOW DRY CREEK

SITE 4D LIMIT OF GRADING
SEE DWG CG121

EX ALCOVE

SITE 4D EXISTING CONDITIONS
1. The Maintenance & Monitoring Easements extend from the boundary line to the centerline of Dry Creek.
2. Suggested access routes shown into the creek are approximate and may be modified based on actual conditions in the field to minimize impacts.
3. SEE SHEET G104 FOR TREE REMOVAL.

NOTES
SITE 4C EXISTING CONDITIONS

MAINTENANCE & MONITORING EASEMENT (NOTE 1)
ACCESS ROUTE, TYP (NOTE 2)
SITE 4C LIMIT OF GRADING
SEE DWG CG131
SHORT TERM STAGING AREA

SITE 4C LIMIT OF GRADING
SEE DWG CG131

SCALE: 1" = 30'
Line Tables for Sites 2A & 2B

2A-1

<table>
<thead>
<tr>
<th>Segment</th>
<th>Begin Station</th>
<th>N/E</th>
<th>CURVE</th>
<th>Curve Radius</th>
<th>Delta Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>0+00</td>
<td></td>
<td>56.6</td>
<td>151.9</td>
<td>18° 52' 33"</td>
</tr>
<tr>
<td>A2</td>
<td>0+50</td>
<td></td>
<td>55.6</td>
<td>151.9</td>
<td>18° 52' 33"</td>
</tr>
<tr>
<td>A3</td>
<td>1+00</td>
<td></td>
<td>55.6</td>
<td>151.9</td>
<td>18° 52' 33"</td>
</tr>
</tbody>
</table>

2A-2

<table>
<thead>
<tr>
<th>Segment</th>
<th>Begin Station</th>
<th>N/E</th>
<th>CURVE</th>
<th>Curve Radius</th>
<th>Delta Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>A4</td>
<td>0+00</td>
<td></td>
<td>55.6</td>
<td>151.9</td>
<td>18° 52' 33"</td>
</tr>
</tbody>
</table>

2A-3

<table>
<thead>
<tr>
<th>Segment</th>
<th>Begin Station</th>
<th>N/E</th>
<th>CURVE</th>
<th>Curve Radius</th>
<th>Delta Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>A5</td>
<td>0+00</td>
<td></td>
<td>55.6</td>
<td>151.9</td>
<td>18° 52' 33"</td>
</tr>
<tr>
<td>A6</td>
<td>0+50</td>
<td></td>
<td>55.6</td>
<td>151.9</td>
<td>18° 52' 33"</td>
</tr>
<tr>
<td>A7</td>
<td>1+00</td>
<td></td>
<td>55.6</td>
<td>151.9</td>
<td>18° 52' 33"</td>
</tr>
<tr>
<td>A8</td>
<td>1+50</td>
<td></td>
<td>55.6</td>
<td>151.9</td>
<td>18° 52' 33"</td>
</tr>
<tr>
<td>A9</td>
<td>2+00</td>
<td></td>
<td>55.6</td>
<td>151.9</td>
<td>18° 52' 33"</td>
</tr>
</tbody>
</table>

2A-4

<table>
<thead>
<tr>
<th>Segment</th>
<th>Begin Station</th>
<th>N/E</th>
<th>CURVE</th>
<th>Curve Radius</th>
<th>Delta Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>A10</td>
<td>0+00</td>
<td></td>
<td>55.6</td>
<td>151.9</td>
<td>18° 52' 33"</td>
</tr>
<tr>
<td>A11</td>
<td>0+50</td>
<td></td>
<td>55.6</td>
<td>151.9</td>
<td>18° 52' 33"</td>
</tr>
</tbody>
</table>

2B-1

<table>
<thead>
<tr>
<th>Segment</th>
<th>Begin Station</th>
<th>N/E</th>
<th>CURVE</th>
<th>Curve Radius</th>
<th>Delta Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>0+00</td>
<td></td>
<td>55.6</td>
<td>151.9</td>
<td>18° 52' 33"</td>
</tr>
<tr>
<td>B2</td>
<td>0+14</td>
<td></td>
<td>55.6</td>
<td>151.9</td>
<td>18° 52' 33"</td>
</tr>
<tr>
<td>B3</td>
<td>0+34</td>
<td></td>
<td>55.6</td>
<td>151.9</td>
<td>18° 52' 33"</td>
</tr>
<tr>
<td>B4</td>
<td>0+64</td>
<td></td>
<td>55.6</td>
<td>151.9</td>
<td>18° 52' 33"</td>
</tr>
<tr>
<td>B5</td>
<td>0+12</td>
<td></td>
<td>55.6</td>
<td>151.9</td>
<td>18° 52' 33"</td>
</tr>
<tr>
<td>B6</td>
<td>0+60</td>
<td></td>
<td>55.6</td>
<td>151.9</td>
<td>18° 52' 33"</td>
</tr>
<tr>
<td>B7</td>
<td>0+14</td>
<td></td>
<td>55.6</td>
<td>151.9</td>
<td>18° 52' 33"</td>
</tr>
<tr>
<td>B8</td>
<td>0+60</td>
<td></td>
<td>55.6</td>
<td>151.9</td>
<td>18° 52' 33"</td>
</tr>
</tbody>
</table>

2B-2

<table>
<thead>
<tr>
<th>Segment</th>
<th>Begin Station</th>
<th>N/E</th>
<th>CURVE</th>
<th>Curve Radius</th>
<th>Delta Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>B9</td>
<td>0+00</td>
<td></td>
<td>55.6</td>
<td>151.9</td>
<td>18° 52' 33"</td>
</tr>
</tbody>
</table>

2B-3

<table>
<thead>
<tr>
<th>Segment</th>
<th>Begin Station</th>
<th>N/E</th>
<th>CURVE</th>
<th>Curve Radius</th>
<th>Delta Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>B11</td>
<td>0+00</td>
<td></td>
<td>55.6</td>
<td>151.9</td>
<td>18° 52' 33"</td>
</tr>
<tr>
<td>B10</td>
<td>0+47</td>
<td></td>
<td>55.6</td>
<td>151.9</td>
<td>18° 52' 33"</td>
</tr>
</tbody>
</table>

1. **US Army Corps of Engineers**
2. **SHEET ID**: CS102
3. **DRAWN BY**: JQW, MAS
4. **CHECKED BY**: MRL
5. **ISSUE DATE**: AUG 2020
6. **DRAWING NO**: W912P7-21-B-XXXX
7. **SOLICITATION NO**: W912P7-21-C-XXXX
8. **SUBMITTED BY**: ENVIRONMENTAL SCIENCE ASSOCIATES
9. **SIZE**: 1425 N McDOWELL BLVD, SUITE 200
10. **ADDRESS**: PETALUMA, CA 94108
11. **CONTROL (SHEET 2 OF 2)**
12. **DATE**
13. **DESCRIPTION**
14. **MARK**
POINT TABLE

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>DESCRIPTION</th>
<th>NORTHING</th>
<th>EASTING</th>
<th>ELEVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>313</td>
<td>5/8" REBAR WIRE PLASTIC CAP "SCWA CONTROL"</td>
<td>1,941,879.23</td>
<td>6,304,462.07</td>
<td>119.35</td>
</tr>
<tr>
<td>314</td>
<td>5/8" REBAR WIRE PLASTIC CAP "SCWA CONTROL"</td>
<td>1,941,859.76</td>
<td>6,305,690.39</td>
<td>118.40</td>
</tr>
</tbody>
</table>

NOTES

1. SEE SHEET CS104 FOR LINE TABLES.

REACH 4C (SITES 4C AND 4D) CONTROL (SHEET 1 OF 2)

SURVEY CONTROL POINT, TYP

USACE GRADE CONTROL SILL #3

FLOW

DRY CREEK

SURVEY CONTROL POINT, TYP

SEE TABLE BELOW

SITE 4D LIMIT OF GRADING

SEE DWG CG121

SITE 4C LIMIT OF GRADING

SEE DWG CG131

APN

089-190-007

089-190-032

089-190-008

089-190-009

089-040-025

089-040-024

089-040-019

089-040-009

US Army Corps of Engineers

G

F

E

D

C

B

A

DRAWN BY:

ISSUE DATE:

SONOMA COUNTY, CALIFORNIA

U.S. ARMY CORPS OF ENGINEERS

DRAWING NO:

CONTRACT NO:

SOLICITATION NO:

SAN FRANCISCO DISTRICT

PHASE II (REACHES 2A UPSTREAM AND 4C)

450 GOLDEN GATE AVE, 4TH FLOOR

SAN FRANCISCO, CA 94102-3406

DESIGNED BY:

CHECKED BY:

SUBMITTED BY:

STATUS 99%
4C-1

<table>
<thead>
<tr>
<th>SEGMENT</th>
<th>BEGIN STATION</th>
<th>BEGIN CASTING</th>
<th>BEGIN NORTHING</th>
<th>LINE BEARING</th>
<th>LINE DISTANCE</th>
<th>CURVE RADIUS</th>
<th>CURVE ANGLE</th>
<th>DELTA ANGLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0+00</td>
<td>6,305,084.0</td>
<td>1,991,751.3</td>
<td>--</td>
<td>--</td>
<td>145.8</td>
<td>380.8</td>
<td>21° 55' 44"</td>
</tr>
<tr>
<td>C2</td>
<td>1+46</td>
<td>6,305,553.7</td>
<td>1,991,842.8</td>
<td>--</td>
<td>--</td>
<td>52.5</td>
<td>75.7</td>
<td>39° 44' 38"</td>
</tr>
<tr>
<td>C3</td>
<td>2+48</td>
<td>6,305,018.0</td>
<td>1,991,930.8</td>
<td>--</td>
<td>--</td>
<td>182.1</td>
<td>467.5</td>
<td>26° 26' 38"</td>
</tr>
<tr>
<td>C4</td>
<td>3+60</td>
<td>6,304,881.0</td>
<td>1,992,017.7</td>
<td>--</td>
<td>--</td>
<td>59.5</td>
<td>83.8</td>
<td>40° 42' 50"</td>
</tr>
<tr>
<td>C5</td>
<td>4+40</td>
<td>6,304,864.7</td>
<td>1,992,163.6</td>
<td>--</td>
<td>--</td>
<td>79.0</td>
<td>111.6</td>
<td>46° 58' 19"</td>
</tr>
<tr>
<td>C6</td>
<td>5+20</td>
<td>6,304,842.5</td>
<td>1,992,178.5</td>
<td>--</td>
<td>--</td>
<td>292.8</td>
<td>1211.1</td>
<td>13° 57' 10"</td>
</tr>
<tr>
<td>C7</td>
<td>6+12</td>
<td>6,304,830.2</td>
<td>1,992,289.2</td>
<td>--</td>
<td>--</td>
<td>225.9</td>
<td>113° 19' 32"</td>
<td></td>
</tr>
</tbody>
</table>

4D-1

<table>
<thead>
<tr>
<th>SEGMENT</th>
<th>BEGIN STATION</th>
<th>BEGIN CASTING</th>
<th>BEGIN NORTHING</th>
<th>LINE BEARING</th>
<th>LINE DISTANCE</th>
<th>CURVE RADIUS</th>
<th>CURVE ANGLE</th>
<th>DELTA ANGLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>0+60</td>
<td>6,305,188.3</td>
<td>1,991,495.4</td>
<td>--</td>
<td>--</td>
<td>120.0</td>
<td>137.5</td>
<td>34° 53' 38"</td>
</tr>
<tr>
<td>D2</td>
<td>1+32</td>
<td>6,305,082.6</td>
<td>1,991,520.8</td>
<td>--</td>
<td>--</td>
<td>63.1</td>
<td>291.9</td>
<td>16° 18' 19"</td>
</tr>
<tr>
<td>D3</td>
<td>2+15</td>
<td>6,305,032.7</td>
<td>1,991,592.6</td>
<td>--</td>
<td>--</td>
<td>137.3</td>
<td>624.2</td>
<td>1° 12' 19"</td>
</tr>
<tr>
<td>D4</td>
<td>3+60</td>
<td>6,304,904.3</td>
<td>1,991,699.5</td>
<td>--</td>
<td>--</td>
<td>64.0</td>
<td>213.3</td>
<td>22° 32' 16"</td>
</tr>
<tr>
<td>D5</td>
<td>4+26</td>
<td>6,304,863.8</td>
<td>1,991,773.0</td>
<td>--</td>
<td>--</td>
<td>60.8</td>
<td>124.4</td>
<td>27° 59' 24"</td>
</tr>
<tr>
<td>D6</td>
<td>4+87</td>
<td>6,304,814.6</td>
<td>1,991,767.6</td>
<td>--</td>
<td>--</td>
<td>294.0</td>
<td>841.8</td>
<td>17° 57' 58"</td>
</tr>
<tr>
<td>D7</td>
<td>5+45</td>
<td>6,304,813.8</td>
<td>1,991,830.7</td>
<td>--</td>
<td>--</td>
<td>75.3</td>
<td>73.0</td>
<td>30° 04' 53"</td>
</tr>
<tr>
<td>D8</td>
<td>6+16</td>
<td>6,304,576.0</td>
<td>1,991,698.4</td>
<td>--</td>
<td>--</td>
<td>271.1</td>
<td>109.7</td>
<td>41° 22' 38"</td>
</tr>
</tbody>
</table>

4C-2

<table>
<thead>
<tr>
<th>SEGMENT</th>
<th>BEGIN STATION</th>
<th>BEGIN CASTING</th>
<th>BEGIN NORTHING</th>
<th>LINE BEARING</th>
<th>LINE DISTANCE</th>
<th>CURVE RADIUS</th>
<th>CURVE ANGLE</th>
<th>DELTA ANGLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>C8</td>
<td>0+00</td>
<td>6,304,882.3</td>
<td>1,992,046.2</td>
<td>--</td>
<td>--</td>
<td>106.6</td>
<td>116.6</td>
<td>53° 29' 46"</td>
</tr>
</tbody>
</table>

4C-3

<table>
<thead>
<tr>
<th>SEGMENT</th>
<th>BEGIN STATION</th>
<th>BEGIN CASTING</th>
<th>BEGIN NORTHING</th>
<th>LINE BEARING</th>
<th>LINE DISTANCE</th>
<th>CURVE RADIUS</th>
<th>CURVE ANGLE</th>
<th>DELTA ANGLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>C9</td>
<td>0+00</td>
<td>6,304,643.2</td>
<td>1,992,385.6</td>
<td>--</td>
<td>--</td>
<td>212.3</td>
<td>1271.6</td>
<td>9° 34' 04"</td>
</tr>
</tbody>
</table>

4D-2

<table>
<thead>
<tr>
<th>SEGMENT</th>
<th>BEGIN STATION</th>
<th>BEGIN CASTING</th>
<th>BEGIN NORTHING</th>
<th>LINE BEARING</th>
<th>LINE DISTANCE</th>
<th>CURVE RADIUS</th>
<th>CURVE ANGLE</th>
<th>DELTA ANGLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>D9</td>
<td>0+40</td>
<td>6,305,133.0</td>
<td>1,991,666.4</td>
<td>--</td>
<td>--</td>
<td>138.9</td>
<td>347.5</td>
<td>23° 53' 41"</td>
</tr>
</tbody>
</table>

4D-3

<table>
<thead>
<tr>
<th>SEGMENT</th>
<th>BEGIN STATION</th>
<th>BEGIN CASTING</th>
<th>BEGIN NORTHING</th>
<th>LINE BEARING</th>
<th>LINE DISTANCE</th>
<th>CURVE RADIUS</th>
<th>CURVE ANGLE</th>
<th>DELTA ANGLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>D10</td>
<td>0+30</td>
<td>6,304,904.8</td>
<td>1,991,708.1</td>
<td>--</td>
<td>--</td>
<td>141.8</td>
<td>284.4</td>
<td>30° 30' 13"</td>
</tr>
</tbody>
</table>

4D-4

<table>
<thead>
<tr>
<th>SEGMENT</th>
<th>BEGIN STATION</th>
<th>BEGIN CASTING</th>
<th>BEGIN NORTHING</th>
<th>LINE BEARING</th>
<th>LINE DISTANCE</th>
<th>CURVE RADIUS</th>
<th>CURVE ANGLE</th>
<th>DELTA ANGLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>D11</td>
<td>0+00</td>
<td>6,304,742.4</td>
<td>1,991,841.1</td>
<td>--</td>
<td>--</td>
<td>153.8</td>
<td>263.9</td>
<td>32° 07' 27"</td>
</tr>
</tbody>
</table>

LINE TABLES FOR SITES 4C & 4D
TREE REMOVAL TABLE

<table>
<thead>
<tr>
<th>TREE #</th>
<th>SPECIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>14" CTNWD</td>
</tr>
<tr>
<td>2022</td>
<td>14" CTNWD</td>
</tr>
<tr>
<td>2023</td>
<td>14" WILO</td>
</tr>
<tr>
<td>2024</td>
<td>14" WILO</td>
</tr>
<tr>
<td>2025</td>
<td>14" WILO</td>
</tr>
<tr>
<td>2026</td>
<td>12" WILO</td>
</tr>
<tr>
<td>2027</td>
<td>10" ALDR (3)</td>
</tr>
<tr>
<td>2028</td>
<td>12" ALDR</td>
</tr>
<tr>
<td>2029</td>
<td>12" WILO</td>
</tr>
<tr>
<td>2030</td>
<td>12" WILO</td>
</tr>
<tr>
<td>2031</td>
<td>12" WILO</td>
</tr>
<tr>
<td>2032</td>
<td>12" WILO</td>
</tr>
<tr>
<td>2033</td>
<td>12" WILO</td>
</tr>
<tr>
<td>2034</td>
<td>12" WILO</td>
</tr>
<tr>
<td>2035</td>
<td>12" WILO</td>
</tr>
</tbody>
</table>

TREE ABBREVIATIONS

1. ALDR (ALDER)
2. CTNWD (COTTONWOOD)
3. WILO (WILLOW)

NOTES

1. TREES NOT MARKED FOR REMOVAL MUST BE PROTECTED IN PLACE.
2. ADJUST GRADING LIMITS AND ACCESS ROUTES TO PROTECT TREES NOT MARKED FOR REMOVAL.
3. SYMBOLS FOR EX TRESS ARE PROPORTIONAL TO APPROXIMATE TREE DIAMETER.
4. ONLY TREES 12-INCH DIA OR GREATER ARE SHOWN.
APN: 089-190-008
APN: 089-040-024

FLOW DRY CREEK
FLOW DRY CREEK

DRY CREEK CENTERLINE
MATCHLINE - SEE SHEET CD104

204+00
205+00
206+00
207+00
208+00
209+00
210+00
211+00
212+00

TOPPLE TREE, TYP
SEE TABLE ON BOTTOM

EXISTING TREE, PIP, TYP (NOTE 1)
SITE 4D LIMIT OF GRADING
SEE DWG CG121

MAINTENANCE & MONITORING EASEMENT

1. TREES NOT MARKED FOR REMOVAL MUST BE PROTECTED IN PLACE.
2. ADJUST GRADING LIMITS AND ACCESS ROUTES TO PROTECT TREES NOT MARKED FOR REMOVAL.
3. SYMBOLS FOR EX TREES ARE PROPORTIONAL TO APPROXIMATE TREE DIAMETER.
4. ONLY TREES 12-INCH DIA OR GREATER ARE SHOWN.

SITE 4D TREE REMOVAL TABLE

<table>
<thead>
<tr>
<th>TREE #</th>
<th>SPECIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>2964</td>
<td>16" ALDR (2)</td>
<td>2966</td>
<td>14" ALDR</td>
<td>2968</td>
<td>14" ALDR</td>
<td>2970</td>
<td>12" ALDR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2965</td>
<td>14" CTNWD</td>
<td>2967</td>
<td>12" ALDR</td>
<td>2971</td>
<td>12" ALDR</td>
<td>2973</td>
<td>12" ALDR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2969</td>
<td>12" WILO</td>
<td>2974</td>
<td>14" ALDR</td>
<td>2975</td>
<td>12" ALDR</td>
<td>2977</td>
<td>12" ALDR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2978</td>
<td>12" WILO LEAVES</td>
<td>2980</td>
<td>12" ALDR</td>
<td>2982</td>
<td>12" CTNWD</td>
<td>2984</td>
<td>12" ALDR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2986</td>
<td>12" WILO</td>
<td>3004</td>
<td>12" ALDR</td>
<td>3006</td>
<td>12" WILO</td>
<td>3008</td>
<td>12" WILO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3009</td>
<td>12" WILO</td>
<td>3011</td>
<td>12" WILO</td>
<td>3012</td>
<td>12 WILO</td>
<td>3014</td>
<td>12" WILO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3015</td>
<td>12" ALDR</td>
<td>3016</td>
<td>12" ALDR</td>
<td>3017</td>
<td>12" ALDR</td>
<td>3018</td>
<td>12" ALDR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3019</td>
<td>12" ALDR</td>
<td>3020</td>
<td>12" CTNWD</td>
<td>3022</td>
<td>12" WILO</td>
<td>3026</td>
<td>12" WILO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3027</td>
<td>12" ALDR</td>
<td>3028</td>
<td>12" WILO</td>
<td>3030</td>
<td>12" WILO</td>
<td>3032</td>
<td>12" WILO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3034</td>
<td>14" WILO</td>
<td>3035</td>
<td>16" ALDR</td>
<td>3036</td>
<td>12" WILO</td>
<td>3037</td>
<td>12" WILO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3038</td>
<td>12" WILO</td>
<td>3039</td>
<td>12" WILO</td>
<td>3040</td>
<td>14" WILO</td>
<td>3041</td>
<td>14" WILO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3042</td>
<td>12" WILO</td>
<td>3043</td>
<td>12" WILO</td>
<td>3044</td>
<td>12" WILO</td>
<td>3045</td>
<td>12" WILO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3046</td>
<td>12" WILO</td>
<td>3047</td>
<td>12" WILO</td>
<td>3048</td>
<td>12 WILO</td>
<td>3049</td>
<td>12" WILO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3050</td>
<td>12" ALDR</td>
<td>3051</td>
<td>12" ALDR</td>
<td>3052</td>
<td>12" WILO</td>
<td>3053</td>
<td>12" WILO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3054</td>
<td>12" WILO</td>
<td>3055</td>
<td>12" WILO</td>
<td>3056</td>
<td>12" WILO</td>
<td>3057</td>
<td>12" WILO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3058</td>
<td>12" WILO</td>
<td>3059</td>
<td>12" WILO</td>
<td>3060</td>
<td>14" WILO</td>
<td>3061</td>
<td>14" WILO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3062</td>
<td>14" ALDR</td>
<td>3063</td>
<td>12" WILO</td>
<td>3064</td>
<td>14" WILO</td>
<td>3065</td>
<td>14" WILO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3066</td>
<td>14" WILO</td>
<td>3067</td>
<td>14" WILO</td>
<td>3068</td>
<td>14" WILO</td>
<td>3069</td>
<td>14" WILO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3070</td>
<td>14" ALDR (2)</td>
<td>3071</td>
<td>14" ALDR</td>
<td>3072</td>
<td>14" ALDR</td>
<td>3073</td>
<td>14" ALDR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3074</td>
<td>14" CTNWD</td>
<td>3075</td>
<td>14" ALDR</td>
<td>3076</td>
<td>14" ALDR</td>
<td>3077</td>
<td>14" ALDR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3078</td>
<td>14" WILO</td>
<td>3079</td>
<td>14" WILO</td>
<td>3080</td>
<td>14" WILO</td>
<td>3081</td>
<td>14" WILO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3082</td>
<td>14" WILO</td>
<td>3083</td>
<td>14" WILO</td>
<td>3084</td>
<td>14" WILO</td>
<td>3085</td>
<td>14" WILO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3086</td>
<td>14" WILO</td>
<td>3087</td>
<td>14" WILO</td>
<td>3088</td>
<td>14" WILO</td>
<td>3089</td>
<td>14" WILO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3090</td>
<td>14" WILO</td>
<td>3091</td>
<td>14" WILO</td>
<td>3092</td>
<td>14" WILO</td>
<td>3093</td>
<td>14" WILO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3094</td>
<td>14" WILO</td>
<td>3095</td>
<td>14" WILO</td>
<td>3096</td>
<td>14" WILO</td>
<td>3097</td>
<td>14" WILO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3098</td>
<td>14" WILO</td>
<td>3099</td>
<td>14" WILO</td>
<td>3100</td>
<td>12" CTNWD</td>
<td>3101</td>
<td>12" CTNWD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3102</td>
<td>12" WILO</td>
<td>3103</td>
<td>12" WILO</td>
<td>3104</td>
<td>12" ALDR</td>
<td>3105</td>
<td>12" ALDR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3106</td>
<td>12" WILO</td>
<td>3107</td>
<td>12" WILO</td>
<td>3108</td>
<td>12" WILO</td>
<td>3109</td>
<td>12" WILO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3110</td>
<td>12" WILO</td>
<td>3111</td>
<td>12" WILO</td>
<td>3112</td>
<td>12" WILO</td>
<td>3113</td>
<td>12" WILO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3114</td>
<td>12" WILO</td>
<td>3115</td>
<td>12" WILO</td>
<td>3116</td>
<td>12" WILO</td>
<td>3117</td>
<td>12" WILO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3118</td>
<td>12" WILO</td>
<td>3119</td>
<td>12" WILO</td>
<td>3120</td>
<td>12" WILO</td>
<td>3121</td>
<td>12" WILO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3122</td>
<td>12" WILO</td>
<td>3123</td>
<td>12" WILO</td>
<td>3124</td>
<td>12" WILO</td>
<td>3125</td>
<td>12" WILO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3126</td>
<td>12" WILO</td>
<td>3127</td>
<td>12" WILO</td>
<td>3128</td>
<td>12" WILO</td>
<td>3129</td>
<td>12" WILO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3130</td>
<td>12" WILO</td>
<td>3131</td>
<td>12" WILO</td>
<td>3132</td>
<td>12" WILO</td>
<td>3133</td>
<td>12" WILO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TREES TO REMOVE, TYP SEE TABLE ON BOTTOM

TREE ABBREVIATIONS
1. ALDR (ALDER)
2. CTNWD (COTTONWOOD)
3. WILO (WILLOW)

TOPPLE TREES

NOTES

1. TREES NOT MARKED FOR REMOVAL MUST BE PROTECTED IN PLACE.
2. ADJUST GRADING LIMITS AND ACCESS ROUTES TO PROTECT TREES NOT MARKED FOR REMOVAL.
3. SYMBOLS FOR EX TREES ARE PROPORTIONAL TO APPROXIMATE TREE DIAMETER.
4. ONLY TREES 12-INCH DIA OR GREATER ARE SHOWN.
APN: 089-040-019
APN: 089-190-034

FLOW
DRY CREEK CENTERLINE
208+00
209+00
210+00
211+00
212+00
213+00
214+00
215+00

MATCHLINE - SEE SHEET CD103

TOPPLE TREE, TYP
SEE TABLE ON BOTTOM
TREE TO REMOVE, TYP
SEE TABLE ON BOTTOM

SITE 4C LIMIT OF GRADING, TYP
EXISTING TREE, PIP, TYP (NOTE 1)

NOTE 1
1. TREES NOT MARKED FOR REMOVAL MUST BE PROTECTED IN PLACE.
2. ADJUST GRADING LIMITS AND ACCESS ROUTES TO PROTECT TREES NOT MARKED FOR REMOVAL.
3. SYMBOLS FOR EX TREES ARE PROPORTIONAL TO APPROXIMATE TREE DIAMETER.
4. ONLY TREES 12-INCH DIA OR GREATER ARE SHOWN.

TREE ABBREVIATIONS
1. ACNE (BOX ELDER)
2. ALRH (ALDER)
3. POFR (COTTONWOOD)
4. SALA (WILLOW)

NAME
SPECIES
TREE #

DATE
DESCRIPTION
MARK

TREE REMOVAL TABLE

TOPPLE TREE

SITE 4C TREE REMOVAL

PLAN
SCALE: 1" = 30'

NOTES

SHEET ID
CD104

16 OF 53

STATUS 99%
SITE 2A MAIN CHANNEL STA 59+17 TO 57+60

NOTES

1. GRADING SECTIONS ARE ORIENTED LOOKING DOWNSTREAM.
2. BLEND TO CONFORM TO EXISTING GRADE AT LIMIT OF GRADING.
3. GRADE TO PRODUCE SMOOTH, NON-PRISMATIC TRANSITIONS BETWEEN GRADE BREAKS.
1. Grading sections are oriented looking downstream.
2. Blend to conform to existing grade at limit of grading.
3. Grade to produce smooth, non-prismatic transitions between grade breaks.
SITE 2A LATERAL CONNECTION (LINE 2A-4) STA 0+57 TO 0+31

SECTION

SCALE: 1" = 10'

NOTES
1. GRADING SECTIONS ARE ORIENTED LOOKING DOWNSTREAM.
2. BLEND TO CONFORM TO EXISTING GRADE AT LIMIT OF GRADING.
3. GRADE TO PRODUCE SMOOTH, NON-PRISMATIC TRANSITIONS BETWEEN GRADE BREAKS.

SITE 2A BANK REPAIR STA 0+84 TO 0+69

SECTION

SCALE: 1" = 10'

NOTES
1. GRADING SECTIONS ARE ORIENTED LOOKING DOWNSTREAM.
2. BLEND TO CONFORM TO EXISTING GRADE AT LIMIT OF GRADING.
3. GRADE TO PRODUCE SMOOTH, NON-PRISMATIC TRANSITIONS BETWEEN GRADE BREAKS.
NOTES
1. DRAWING SECTIONS ARE ORIENTED LOOKING DOWNSTREAM
2. BLEND TO CONFORM TO EXISTING GRADE AT LIMIT OF GRADING
3. GRADE TO PRODUCE SMOOTH, NON-PRISMATIC TRANSITIONS BETWEEN GRADE BREAKS
NOTES
1. GRADING SECTIONS ARE ORIENTED LOOKING DOWNSTREAM.
2. BLEND TO CONFORM TO EXISTING GRADE AT LIMIT OF GRADING.
3. GRADE TO PRODUCE SMOOTH, NON-PRISMATIC TRANSITIONS BETWEEN GRADE BREAKS.
SITE 4D BACKWATER ALCOVE (LINE 4D-1) STA 9+57 TO 6+29

NOTES

1. GRADING SECTIONS ARE ORIENTED LOOKING DOWNSTREAM.
2. BLEND TO CONFORM TO EXISTING GRADE AT LIMIT OF GRADING.
3. GRADE TO PRODUCE SMOOTH, NON-PRISMATIC TRANSITIONS BETWEEN GRADE BREAKS.

1. GRADING SECTIONS ARE ORIENTED LOOKING DOWNSTREAM.
2. BLEND TO CONFORM TO EXISTING GRADE AT LIMIT OF GRADING.
3. GRADE TO PRODUCE SMOOTH, NON-PRISMATIC TRANSITIONS BETWEEN GRADE BREAKS.
NOTES

1. GRADING SECTIONS ARE ORIENTED LOOKING DOWNSTREAM.
2. BLEND TO CONFORM TO EXISTING GRADE AT LIMIT OF GRADING.
3. GRADE TO PRODUCE SMOOTH, NON-PRISMATIC TRANSITIONS BETWEEN GRADE BREAKS.
NOTES
1. SEE DWGS CG131 & CG132 FOR ALIGNMENT LAYOUT.
2. CHANNEL STATIONING IS APPROXIMATE. CONTOUR GRADING GOVERNS.
NOTES
1. GRADING SECTIONS ARE ORIENTED LOOKING DOWNSTREAM.
2. BLEND TO CONFORM TO EXISTING GRADE AT LIMIT OF GRADING.
3. GRADE TO PRODUCE SMOOTH, NON-PRISMATIC TRANSITIONS BETWEEN GRADE BREAKS.
NOTES
1. BLEND SECTIONS ARE ORIENTED LOOKING DOWNSTREAM.
2. BLEND TO CONFORM TO EXISTING GRADE AT LIMIT OF GRADING
3. GRADE TO PRODUCE SMOOTH, NON-PRISMATIC TRANSITIONS BETWEEN GRADE BREAKS.
NOTES
1. GRADING SECTIONS ARE ORIENTED LOOKING DOWNSTREAM.
2. BLEND TO CONFORM TO EXISTING GRADE AT LIMIT OF GRADING.
3. GRADE TO PRODUCE SMOOTH, NON-PRISMATIC TRANSITIONS BETWEEN GRADE BREAKS.
1. Log must be placed in the presence of the government representative. Field fit and adjust as needed to conform irregular logs to neat dimensions shown.

2. Site 2B: Side channel inlet plug log orientations vary from detail shown. See enhancement plan sheet CG110 for orientation.

<p>| SIDE CHANNEL INLET PLUG CREST EL TABLE |</p>
<table>
<thead>
<tr>
<th>LINE</th>
<th>STA</th>
<th>CREST EL</th>
<th>TOP OF LOG (BURIED END)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2A-1</td>
<td>3+70</td>
<td>74.0</td>
<td>67.0</td>
</tr>
<tr>
<td>2A-2</td>
<td>3+75</td>
<td>77.0</td>
<td>68.0</td>
</tr>
<tr>
<td>2B-1</td>
<td>5+30</td>
<td>75.0</td>
<td>68.0</td>
</tr>
<tr>
<td>4C-1</td>
<td>9+95</td>
<td>102.0</td>
<td>95.0</td>
</tr>
<tr>
<td>4D-1</td>
<td>9+55</td>
<td>103.0</td>
<td>96.0</td>
</tr>
</tbody>
</table>
INSTALLATION ORIENTATION VARIES
VAR 3:1 TO 10:1
VAR 2:1 TO 3:1

SCHEDULE OF LOGS
STEEL ROD CONNECTION

NOTES
1. LOG MUST BE PLACED IN THE PRESENCE OF THE GOVERNMENT REPRESENTATIVE. FIELD FIT AND ADJUST AS NEEDED TO CONFORM IRREGULAR LOGS TO NEAT DIMENSIONS SHOWN.
2. DETAIL SHOWS EMBEDMENT DEPTH ASSUMING THE LOG IS THE MINIMUM LENGTH SPECIFIED. IF LONGER LOG IS USED, INCREASE EMBEDMENT LENGTH AND DEPTH AS NEEDED TO MEET REQUIREMENTS SHOWN. DETAIL SHOWS MAXIMUM EXPOSED LOG LENGTH. LENGTH MAY BE INCREASED IF LONGER LOG IS USED. CONFIRM WITH DESIGN ENGINEER.
3. LOGS MAY BE NOTCHED (3" MAX) TO ACHIEVE ORIENTATION AND EMBEDMENT AS SHOWN.
4. BALLAST BOULDER MUST BEAR DIRECTLY ON LOG.
5. BACKFILL TRENCH WITH COBBLE BALLAST. BACKFILL LIMITS SHOWN ARE SCHEMATIC ONLY. ACTUAL LIMITS WILL VARY.
6. FORCING WOOD PLACEMENT WILL BE INSTALLED OVER A RANGE OF ORIENTATION AND BANK SLOPES. SEE ENHANCEMENT PLANS FOR ORIENTATION.
7. HEIGHT VARIES 0' TO 3' DEPENDING ON BANK SLOPE.
1. LOG MUST BE PLACED IN THE PRESENCE OF THE GOVERNMENT REPRESENTATIVE. FIELD FIT AND ADJUST AS NEEDED TO CONFORM TO REGULAR LOG TO NEAT DIMENSIONS SHOWN.

2. DETAIL SHOWS EMBEDMENT DEPTH ASSUMING THE LOG IS THE MINIMUM LENGTH SPECIFIED. IF LONGER LOG IS USED, INCREASE EMBEDMENT LENGTH AND DEPTH AS NEEDED TO MEET REQUIREMENTS SHOWN. DETAIL SHOWS MAXIMUM EXPOSED LOG LENGTH. LENGTH MAY BE INCREASED IF LONGER LOG IS USED. CONFIRM WITH DESIGN ENGINEER.

3. HABITAT WOOD PLACEMENT WILL BE INSTALLED OVER A RANGE OF ORIENTATION AND A RANGE OF BANK SLOPES. SEE ENHANCEMENT PLANS FOR ORIENTATION.

4. BALLAST BOULDER MUST BEAR DIRECTLY ON LOG.

5. BACKFILL TRENCH WITH COBBLE BALLAST. BACKFILL LIMITS SHOWN ARE SCHEMATIC ONLY. ACTUAL LIMITS WILL VARY.

6. HEIGHT VARIES 1' TO 3' DEPENDING ON BANK SLOPE.
NOTES

1. TOPPLE TREE USING SAFETY PRACTICES CONSISTENT WITH INTERNATIONAL SOCIETY OF ARBORICULTURE ANSI Z133.

2. MAINTAIN ROOT MASSES AS SHOWN AND RETAIN APPROX. 30% OF THE ROOTS INTACT IN PLACE. BACKFILL EXCAVATED TRENCH WITH COBBLE BALLAST TO APPROX. DESIGN GRADE ELEVATION AND COMPACT TO 85% RC.

3. MAINTAIN BRANCHES AND CANOPY STRUCTURE, GOVERNMENT REPRESENTATIVE MAY PROVIDE GUIDANCE REGARDING REMOVAL OF SELECT BRANCHES TO FACILITATE INSTALLATION.

4. TOPPLE TREE STRUCTURE MAY INCLUDE MULTIPLE TRUNKS.

5. TOPPLE TREE TOWARD CHANNEL, AS SHOWN ON ENHANCEMENT PLANS CG102, CG112, CG122, AND CG132.

EXCAVATION ZONE, TYP

NOTE 1

10'-12'

MAINTAIN BRANCHES

NOTE 2

NOTES

1. TOPPLE TREE USING SAFETY PRACTICES CONSISTENT WITH INTERNATIONAL SOCIETY OF ARBORICULTURE ANSI Z133.

2. MAINTAIN ROOT MASSES AS SHOWN AND RETAIN APPROX. 30% OF THE ROOTS INTACT IN PLACE. BACKFILL EXCAVATED TRENCH WITH COBBLE BALLAST TO APPROX. DESIGN GRADE ELEVATION AND COMPACT TO 85% RC.

3. MAINTAIN BRANCHES AND CANOPY STRUCTURE, GOVERNMENT REPRESENTATIVE MAY PROVIDE GUIDANCE REGARDING REMOVAL OF SELECT BRANCHES TO FACILITATE INSTALLATION.

4. TOPPLE TREE TOWARD CHANNEL, AS SHOWN ON ENHANCEMENT PLANS CG102, CG112, CG122, AND CG132.
CLUSTER OF 3 BOULDERs, 1' SPACING (TYP OF 6)
RANDOM BOULDER PLACEMENT, TYP OF 4

SPACE CLUSTERS
MIN 6'-8' APART

1 TON TO 2 TON BOULDER (TYP) 22 TOTAL

A-1
BOULDER FIELD
PLAN VIEW
SCALE: 1" = 5'

BOULDER FIELD
PROFILE VIEW
SCALE: 1" = 5'

MIN 6" EMBEDMENT
MAN CHANNEL BED

MAIN CHANNEL BED

A
NOTES

1. BASE FLOW WSE IS APPROXIMATE. CONTRACTOR TO VERIFY IN FIELD.
NOTES
1. SEE EROSION CONTROL DETAILS DRAWING (CX501) FOR SEED MIXES.
2. SEE EROSION CONTROL DETAILS DRAWING (CX501) FOR SEED MIXES.
3. PRIOR TO FABRIC PLACEMENT, SEED ALL DISTURBED AREAS USING APPROPRIATE
 SEED MIXES (SEE TABLE THIS SHEET).
SEED MIX TABLE

<table>
<thead>
<tr>
<th>LATIN NAME</th>
<th>COMMON NAME</th>
<th>LBS/ACRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGROSTIS EXARATA</td>
<td>SPIKE BENTGRASS</td>
<td>2</td>
</tr>
<tr>
<td>ELEOCHARIS MACROSTACHY</td>
<td>CREEPING SPIDERGRASS</td>
<td>2</td>
</tr>
<tr>
<td>FESTUCA RUBRA</td>
<td>RED FESCUE</td>
<td>5</td>
</tr>
<tr>
<td>HORDEUM BRACHYANTHERUM</td>
<td>MEADOW BARLEY</td>
<td>10</td>
</tr>
<tr>
<td>LEOYMS TRITICIDES</td>
<td>CREEPING WILDRYE</td>
<td>10</td>
</tr>
<tr>
<td>FESTUCA MICROSTACHYS</td>
<td>SMALL FESCUE</td>
<td>5</td>
</tr>
<tr>
<td>TRIFOLIUM WORMSKOLOI</td>
<td>COW CLOVER</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

LOWER BANK SEEDING AREA

<table>
<thead>
<tr>
<th>LATIN NAME</th>
<th>COMMON NAME</th>
<th>LBS/ACRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGROSTIS EXARATA</td>
<td>SPIKE BENTGRASS</td>
<td>2</td>
</tr>
<tr>
<td>ELEOCHARIS MACROSTACHY</td>
<td>CREEPING SPIDERGRASS</td>
<td>2</td>
</tr>
<tr>
<td>FESTUCA RUBRA</td>
<td>RED FESCUE</td>
<td>5</td>
</tr>
<tr>
<td>HORDEUM BRACHYANTHERUM</td>
<td>MEADOW BARLEY</td>
<td>10</td>
</tr>
<tr>
<td>LEOYMS TRITICIDES</td>
<td>CREEPING WILDRYE</td>
<td>10</td>
</tr>
<tr>
<td>FESTUCA MICROSTACHYS</td>
<td>SMALL FESCUE</td>
<td>5</td>
</tr>
<tr>
<td>TRIFOLIUM WORMSKOLOI</td>
<td>COW CLOVER</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>35</td>
</tr>
</tbody>
</table>

MIDDLE BANK SEEDING AREA

<table>
<thead>
<tr>
<th>LATIN NAME</th>
<th>COMMON NAME</th>
<th>LBS/ACRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BROMUS CARINATUS</td>
<td>CALIFORNIA BROME</td>
<td>5</td>
</tr>
<tr>
<td>ELYMUS GLAUCUS</td>
<td>BLUE WILDRYE</td>
<td>5</td>
</tr>
<tr>
<td>FESTUCA MICROSTACHYS</td>
<td>SMALL FESCUE</td>
<td>5</td>
</tr>
<tr>
<td>FESTUCA RUBRA</td>
<td>RED FESCUE</td>
<td>10</td>
</tr>
<tr>
<td>HORDEUM BRACHYANTHERUM</td>
<td>MEADOW BARLEY</td>
<td>10</td>
</tr>
<tr>
<td>LEOYMS TRITICIDES</td>
<td>CREEPING WILDRYE</td>
<td>5</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>40</td>
</tr>
</tbody>
</table>

UPPER BANK SEEDING AREA

<table>
<thead>
<tr>
<th>LATIN NAME</th>
<th>COMMON NAME</th>
<th>LBS/ACRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACHILLEA MILLEFOLIUM</td>
<td>YARROW</td>
<td>1</td>
</tr>
<tr>
<td>BROMUS CARINATUS</td>
<td>CALIFORNIA BROME</td>
<td>10</td>
</tr>
<tr>
<td>ELYMUS GLAUCUS</td>
<td>BLUE WILDRYE</td>
<td>8</td>
</tr>
<tr>
<td>ESCOCHOZLA CALIFORNICA</td>
<td>CALIFORNIA POPPY</td>
<td>1</td>
</tr>
<tr>
<td>FESTUCA MICROSTACHYS</td>
<td>SMALL FESCUE</td>
<td>5</td>
</tr>
<tr>
<td>ACKSPON AMERICANUS</td>
<td>SPANISH CLOVER</td>
<td>2</td>
</tr>
<tr>
<td>LUPINUS BICOLOR</td>
<td>MINIATURE LUPINE</td>
<td>1</td>
</tr>
<tr>
<td>BACCHARIS PLUARIS</td>
<td>COYOTE BRUSH</td>
<td>2</td>
</tr>
<tr>
<td>STIPA PULCHRA</td>
<td>PURPLE NEEDLEGRASS</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>40</td>
</tr>
</tbody>
</table>

NOTES

1. FINISH GRADE SURFACE SHALL BE CLEARED OF LOOSE ROCKS, CLODS, STICKS AND GRASS BEFORE FABRIC INSTALLATION.
2. USE TWO LAYERS (DOUBLE LAYER) BIODEGRADABLE CORR EROSION CONTROL FABRIC. PLACE WOVEN FABRIC ON UNWOVEN FABRIC AND SECURE.
3. HYDROSEED SLOPE WITH NATIVE SEED MIX BEFORE PLACING FABRIC.
4. LAY FABRIC LOOSELY AND STAGE 2’ DC (VERTICAL) AND 2’ DC (HORIZONTAL) TO MAINTAIN DIRECT CONTACT WITH THE FINISH GRADE SURFACE. DO NOT STRETCH.
5. FABRIC SHALL BE INSTALLED VERTICALLY DOWNSLOPE AND OVERLAPPED A MIN OF 3’ IN DOWNSTREAM DIRECTION.
6. FABRIC SHALL BE EXTENDED MIN 2’ LATERALLY FROM THE TOP OF BANK, SECURED PER DETAIL THIS SHEET.